
Between Now and the Semantic Web

Andrew Crossen, Jay Budzik, and Kristian J. Hammond
 Intelligent Information Laboratory
 Northwestern University

1890 Maple Ave.
Evanston, IL ISA

{acrossen, budzik, hammond}@infolab.northwestern.edu

Abstract
The Information Source Adapter Platform (or ISA Platform,
for short) is a set of practical enabling technologies for
developing intelligent information systems. The platform
provides an infrastructure for building lightweight
interfaces to existing resources that can be composed
automatically using means-ends analysis. The ISA Platform
enables developers to rapidly create new and innovative
applications that leverage existing resources, without
requiring the transition to semantic web technologies be
complete. Two deployments of the technology are
discussed.

Introduction
 Many organizations have invested considerable effort in
building information systems that support their work
processes. These information systems are often built for a
specific task, for example, storing project records. Large
organizations can have hundreds of such systems that are
actively in use. The systems perform well for the tasks
they were designed to support, and are frequently tightly
integrated into work process. In addition to internal
resources, externally-hosted information systems,
sometimes publicly available over the Internet (for
example, Internet search engines) but also subscription
services (for example, Lexis-Nexis) are often used by
members of an organization to augment internal resources.
 The evolution of these applications has resulted in the
development of multiple data silos, often with proprietary
interfaces. These data silos often do not provide
standards-based access methods, making the development
of information aggregation applications a costly, if not
entirely prohibitive endeavor. In addition, multiple points
of access and strict separation of data mean that significant
effort is required to fully utilize existing data resources.
 Semantic web technologies [2] provide an infrastructure
for building applications that make use of distributed
resources by allowing authors to describe those resources
using a common ontology (e.g., [5]). Applications can
discover, utilize and compose these resources when
applicable. Yet these technologies all require information
providers publish their data using an agreed-upon
ontology. This means that progress in application
development has to wait until providers migrate to
standards which have yet to fully emerge. Thus

applications are limited to simple domains [6] or require
significant investment in information infrastructure [10].
 We do not have to wait for the widespread adoption of
semantic web technologies to start making progress on real
applications that use semantics. Using the lightweight
adapter platform presented in the following sections, we
have built and deployed a variety of such systems using
existing information services.
 For example, one system supports the task of buying
over-the-counter drugs in a brick-and-mortar drugstore by
delivering relevant supplemental information to the
consumer. The system’s input is the barcode of the
product. A product information database internal to the
store is queried to look up information about the drug.
Data such as the drug’s type, active ingredients, and
intended uses are then used to query an appropriate set of
information sources in a second round of information
gathering. The resulting aggregate data - retrieved from a
variety of sources internally and on the Web - is parsed
into a machine-readable format suitable for composition
using the ISA Platform. This data is then presented to the
user in a coherent fashion as a mini-site that reflects the
semantics of the information retrieved and its intended
context of use. Moreover, the information is usable given
the constraints of the devices on which it will be viewed.
 The Information Source Adapter Platform (or ISA
Platform, for short) is a set of enabling technologies for
developing interfaces to resources, and building intelligent
information aggregation systems—virtual systems that
leverage existing data silos—without requiring service
providers adopt semantic web technologies. We aim to
leverage the semantics associated with data contained in
these resources, and in the application domain, while the
transition to the semantic web is underway.
 We have built and deployed a number of such
applications, two of which will be described in following
sections. The XLibris system [4] automatically aggregates
subject-specific information about books and other retail
products. The Watson system [3] automatically discovers
relevant information in the context of document
manipulation tasks. Our experience with the ISA Platform
shows that it significantly reduces the time required to
develop and deploy intelligent information systems. This
application-centric focus allows us to make progress
building innovative systems whose functionality has
determined the capabilities of the infrastructure described

herein. Our view is this approach ensures the infrastructure
we build is relevant, necessary, and as simple as possible.

Information Adapters
 Achieving web service interoperability requires uniform
data descriptions. Many existing systems (e.g. Google,
Amazon) provide unambiguous data schema, but the use of
this data by another application requires transformation
into its own schema. This transformation requires a
wrapper, or adapter component. The principal problems in
adapter construction are source connectivity and parsing,
which can be simple if an adapter development
environment provides specific scaffolding to support them.
The ISA Platform defines a unified access mechanism, and
a simple parsing language that, unlike XSLT, works on
any data format. Information from databases, Web search
engines, and legacy systems can be parsed and used by
other systems without the need for the providing source to
subscribe to a web services model. Wrappers can expose
these legacy services as web services themselves and
provide semantic annotations that map directly into
existing and evolving ontologies, facilitating the transition
to the semantic web.
 Information services are encapsulated by information
adapters expressed in XML. Information adapters contain
metadata descriptions of a source (semantic representations
of its input and output characteristics). In addition, they
contain descriptions of how to transform information goals
generated by query producers (components providing input
data for information adapters) into source specific queries,
and also for how to parse the results of a query.
Information items returned from executing queries can be
dealt with in any number of ways by an application
leveraging the ISA Platform; they can be immediately
displayed to an end-user, dumped to a database, stored in
shared memory for use in generating queries to another
information source, or transformed via XSLT into any of
the existing resource description formats and ontologies.
 Information sources and transformations are stored in
definition files. A request executor allows applications to
specify information needs based on abstract requirements,
without prior knowledge of the source of the information
to
be retrieved.
 The layer diagram presented in Figure 1 summarizes the
architecture for the ISA Platform, which acts as the
interface between information aggregation applications
and distributed information sources. These applications

interact with an API layer by posting a request and
providing a sink, which will receive status messages and
collect results. The API layer instantiates an instance of the
execution planner, which produces an execution plan,
consisting of a list of definition files to be executed by the
interpreter. The interpreter executes the plan by running
definition files, which are backed by language plug-ins.

 Application

Info Source Application Interface

Execution Planner

Interpreter

Definition Files Language Plug - -Ins

Request
Executor

Figure 1: ISA Platform Layer Diagram
Representing sources in definition files
 Information source definition files contain a declarative
representation of an information source or transformation
and a procedural definition of a simple parser. The
representation consists of the following three parts:

1. A header, which contains, in general, metadata
concerning the source and a human-readable
description.

2. An executive summary, which describes the
source’s input requirements, and what it produces
as output, thus defining the contexts in which a
source is applicable.

3. A list of execution steps, which describe the
actions required to produce requisite information
given inputs that match the capabilities of the
source and the requirements of the step.

 Information source headers contain a unique identifier,
and the URI at which updates are available. They also
contain a description, which defines the type of source the
definition represents. For example, the following code
extract is from the header of a definition file for the
Library of Congress online card catalog:

<!DOCTYPE INFOSOURCE SYSTEM "isadapterdef.dtd">
 <INFOSOURCE UID="infolab.infoadapter.loc"
 SRC="http://isapkg.infolab.northwestern.edu/
 isadef/loc.xml"
 VERSION="1.0"
 LASTUPDATE="2004-02-09"
 LOADLIBRARY="BASE.DLL">

<DESCRIPTION
TYPE="Card Catalog"
HREF="http://catalog.loc.gov/"
NAME="Library of Congress Online Catalog"
LOGOHREF="http://www.loc.gov/homepage/...”
Library of Congress online card catalog.

 </DESCRIPTION>
 ...

 ISA definitions receive syntactic validation through the
XML parser by subscribing to an XML Document Type
Declaration (DTD). The DTD defines all valid tags and
attributes expected in definition files.
 The executive summary contains a description of what a
source or transformation requires as input and produces as
output. For example, the Library of Congress online card
catalog is searchable by ISBN (it requires an ISBN as
input) and it produces the author and title of the work
corresponding to that ISBN:

 ...

<EXECUTIVE_SUMMARY>
 <REQUIRES>
 <FIELD NAME="ISBN"/>
 </REQUIRES>
 <PRODUCES TYPE="SINGLETON" NAME="CATALOG_ENTRY">
 <FIELD NAME="AUTHOR"/>
 <FIELD NAME="TITLE"/>
 ...

 </PRODUCES>
</EXECUTIVE_SUMMARY>
...

 Each information source has a set of execution steps,
which, when executed with the information they require,
produce the information described in the executive
summary. Execution steps can be chained together much
like information sources, but in the scope of retrieving
information from a single source. This allows a single
definition file to have multiple execution paths based on
intermediate steps (e.g., the success or failure of an
authentication process, or retrieval of a session ID from
one page to drive search in another).
 In the Library of Congress example, the online catalog
first requires an HTTP request to retrieve a session ID,
which uniquely identifies the request in their catalog
system. Once the session ID is retrieved from one page,
another HTTP request is issued in order to retrieve the
actual record from the card catalog database.
 Each execution step contains its own executive
summary, as above, which describes its input requirements
and what it produces at output. The information a step
produces may be used by subsequent steps or may contain
information that will end up in the results returned to an
application.
 The following execution step is typical of Web-based
systems. It contains a REQUEST tag, which describes the
HTTP request to post in order to retrieve the required
information. Next, the RESPONSE tag contains a
description of a lexical analysis routine, which populates a
machine-readable schema with elements partitioned from
the HTML source code returned by the information source.
The parser defines a finite state automaton, which
advances through the text stream until it has detected a
relevant sequence of characters. Where available, XSLT-
based parsing can also be supported using an alternate
language plug-in.

...
<STEP NAME="PID_REQUEST">

 <PRODUCES NAME="PROCESS_ID">
 <FIELD NAME="PID"/>
 </PRODUCES>
 <REQUEST LOADLIBRARY="HTTPDLL.DLL">
 <ACTION STORE="PID_PAGE"
 METHOD="GET"
 HTTP_VERSION="1.1"
 URL="http://catalog.loc.gov/..."/>
 </REQUEST>

<RESPONSE>
 <PARSE SOURCE="PID_PAGE" START_STATE="INITIAL"
 END_STATE="THE_END">
 <SKIPUNTIL FROM_STATE="INITIAL"

 TO_STATE="PRE_PID">
<![CDATA[&PID=]]>

</SKIPUNTIL>
 <STOREUNTIL FROM_STATE="PRE_PID"
 TO_STATE="THE_END"
 FIELD="PID"
 RESULT_ON="PROCESS_ID">
 <![CDATA["]]>
 </STOREUNTIL>
 </PARSE>
 </RESPONSE>
</STEP>

 ...

The language is expressive enough to build any parsing
program. The structure provided by the primitives allows

developers to focus on the important aspects of the parsing
program instead of the details of the implementation.

Wrapper Data Verification and Error Handling
 The ISA Platform is designed to provide flexible status
and error reporting, both during development of wrappers
and after the wrapper is in use by a client application.
While these error handling techniques may sound like
incidental implementation details, they are a requirement
for a robust system with real world deployment and are
given equal importance and consideration.
Status Reporting
 Each component of the Platform propagates messages of
various types to the status reporter, affording wrapper
developers and end-users different levels of debugging and
error reporting at different stages of interaction with the
Platform. For example, wrapper developers using the
Platform need detailed information about the parser at a
certain stage of development. When a wrapper is built and
fully operable, these detailed messages can be turned off.
When the Platform is being used in a production
application environment, end users won’t care about the
operations of the parser, but may want to be informed of
errors crucial to system operation, such as a failed network
request. Levels of debugging are arranged around the
Platform system components, allowing developers to trace
wrapper execution down to a set of logical components.
To this end, the Platform provides an intuitive interface for
managing the status and error reporter settings, allowing
the system to be sensitive to users’ and developers’ needs.
Data Validation
 Wrapper authors may not have control over interface
changes that occur in the sources being wrapped. For
example, if a web search engine changes the structure of
their underlying HTML layout, chances are the parser for
this source in the ISA Platform may become broken. In
contrast, when the URI of a source’s query form on the
Web changes, the wrapper will be broken in another way.
Thus the Platform provides mechanisms for tracking
request failures and asserting validation properties of
retrieved data, streamlining the (inevitable) wrapper
maintenance task.
 In practice, two factors can contribute to invalid wrapper
operation for all types of data sources: (1) problems
stemming from an improperly written wrapper for a
properly working and accessible data source; (2) problems
stemming from data source unavailability or interface
change.
 This results in five distinct retrieval error classes, each
of which is handled intrinsically by the ISA Platform in a
unified manner:

1. Source’s retriever fails to locate resource
2. Source’s retriever locates resource, returns results

for a given input, but results are judged invalid by a
set of validation rules.

3. Source’s retriever locates resource, but fails to
provide results for input due to no matching states
in parser (in the case of parsing unstructured data).

4. Source’s retriever locates resource, but fails to
provide results for input due to improper state
transition declaration – one or more states are
matched, but state transitions are inappropriate (in
the case of parsing unstructured data).

5. Source’s retriever locates resource, but fails to
provide results for input due to data structure
change (in the case of structured data retrieval).

 Moreover, the severity of the system’s response to an
error may differ depending on a number of factors. For
some sources, no retrieval errors may be tolerated, and
further attempts to use the source should be disallowed.
For other sources it may be beneficial to allow some
margin of error, especially during wrapper development
and for those wrappers where all retrieval states are not
known.
 Either situation is supported through the use of an
“Allowed Failure Percentage” (AFP) value for each ISA.
This ratio, which the wrapper writer will typically adjust
during the lifecycle of the wrapper, is defined as an
attribute in a source’s header, and determines the point at
which the wrapper will be deemed unusable. The Platform
allows for an administrator to be notified of all errors
regardless of a source’s AFP, or any subset of errors for
which they are interested.
 Wrapper errors in the class defined by 2 (above) require
post-retrieval verification of a source’s produced data,
based on a set of rules the wrapper writer states about the
data. The ISA Platform declares failure as binary, under
Kushmerick’s entailment assumption (one failed constraint
assumes complete failure) equivalence assumption (all
constraints are equal measures of failure) [7].
 For a given field in an ISA definition, the following
verification flags may be specified in the ASSERT
attribute of a FIELD tag within a wrapper’s executive
summary. When the value of a field is available post-
retrieval, one or more of these assertions, if stated, are
tested against the resultant data item:
• NUM_ONLY: The field value should be purely numeric

(no alphabetic or punctuation characters allowed).
• NO_HTML: There should be no HTML tags or

fragments thereof in the field value
• IS_URL: The field value is a URL
• OPTIONAL: This field is optional and not required as

part of a valid response.
 Any number of other constraints can be built into the
system to validate data items, although empirical evidence
[7] suggests that the assertions provided handle the
majority of the error cases.

Transformation of Retrieved Results
 If the data retrieved via one or more queries to the ISA
Platform is intended to be displayed to an end user, it is
desirable to have the results be presented in a human-
readable format. Moreover, the data may need to be

displayed in different formats to best support the user’s
client, whether that’s a standard web browser on a desktop
machine, a WAP-enabled cellular phone, or a
Palm/PocketPC device.
 When it is finished retrieving data, the Platform returns
all results bundled in an XML document. This allows the
developer to build applications that use XSLT stylesheets
to perform any number of transformations on the data.
Stylesheets use XPath queries to select nodes out of an
XML document, and perform transformations on them to
describe how they should be presented to the user.
Stylesheets can transform XML into an HTML document
for standard browsers, WML for web-enabled cellular
phones, into another XML-based format.
 Formats such as RSS can be output by another
transformation, and further labeled with terms from a
standard ontology (e.g., [5]), effectively bringing the
information source – or the application aggregating data
across multiple sources – into the Semantic Web
framework.

Planning and Executing Sequences of Queries
 Applications provide the ISA Platform with a request,
which consists of the information the application has in
hand, and the information it wants the Platform to retrieve.
For example, an application could post the following
request for Web pages about a book with a given ISBN
number:

<QUERY>
<HAVE_NAME=”ISBN” VALUE=”0805210407”/>

 <WANT NAME=”BOOK_PAGE”/>
</QUERY>

 The planning system, a means-ends analysis engine,
automatically constructs an execution plan for retrieving
required information by combining information sources
and input/output rules defined in the definition files. The
execution plan is constructed based on the information an
application has in hand, and information it is attempting to
retrieve, using a library of information sources and
transformations which, when executed in sequence,
produce the required output. Figure 2b shows simplified
pseudocode for the planning algorithm.
 Once an execution plan is created, definition files are
processed by an extensible interpreter, which performs the
actions required to retrieve the requested information.
Given a request, the request executor automatically finds a
sequence of information sources and transformations to
execute. Using the description of the input requirements
and contents of a source’s output, contained in the
executive summary of each definition file, the system
builds a dependency graph by chaining requirements. In
cases where multiple sources satisfy a given goal, the
system defaults to querying all sources. Optionally, a list
of matching sources can be returned to an application for
selection refinement.
 For example, consider an application that requests Web
pages about a book for a given ISBN number. The

Loaded Library of Congress Adapter

Loaded Google Adapter

GIVEN: ISBN: 0805210407

WANTED: BOOK PAGES

USING ACCESS PLAN:

Library of Congress Adapter

REQUIRES: ISBN

PRODUCES: BOOK TITLE, AUTHOR

Google Adapter

REQUIRES: BOOK TITLE, AUTHOR

PRODUCES: BOOK PAGES

let requests be the initial list of goals
let plan be nil
let results be nil
while requests is not empty do

for each request r in requests do
for each adapter a do

if Produces(a, r) and r ∉ results then
if Requires(a) ∉ results then

append Requires(a) to requests
append a to plan
append r to results
remove r from requests

Library of Congress Adapter

Requires:

ISBN

Produces:

Book Title
Author

Google Adapter

Requires:

Book Title
Author

Produces:

Book Pages

(a) (b) (c)

Loaded Library of Congress Adapter

Loaded Google Adapter

GIVEN: ISBN: 0805210407

WANTED: BOOK PAGES

USING ACCESS PLAN:

Library of Congress Adapter

REQUIRES: ISBN

PRODUCES: BOOK TITLE, AUTHOR

Google Adapter

REQUIRES: BOOK TITLE, AUTHOR

PRODUCES: BOOK PAGES

let requests be the initial list of goals
let plan be nil
let results be nil
while requests is not empty do

for each request r in requests do
for each adapter a do

if Produces(a, r) and r ∉ results then
if Requires(a) ∉ results then

append Requires(a) to requests
append a to plan
append r to results
remove r from requests

Library of Congress Adapter

Requires:

ISBN

Produces:

Book Title
Author

Library of Congress Adapter

Requires:

ISBN

Produces:

Book Title
Author

Google Adapter

Requires:

Book Title
Author

Produces:

Book Pages

(a) (b) (c)
Figure 2: Access planning and source representation. Figure 2a displays two information source adapters (ISAs), Figure
2b shows simplified pseudocode for the ISA Platform planning algorithm, and Figure 2c shows a trace of the plan builder.

executive summary section of the Google definition file
shows that it can produce book pages given a book’s title
and the author’s name (see Figure 2a). The Library of
Congress definition file shows that it can produce a book
title and author’s name given an ISBN number (Figure 2a).
The application has provided the ISBN number, so the
execution plan in Figure 2c is generated.

Once a plan is constructed, the executor instantiates an
environment, which is populated with information
contained in the application’s initial request. Each
information source or transformer is run in sequence,
populating the environment with information gathered,
including information necessary to run the next adapter.
The interpreter is backed by language plug-ins, allowing
developers to extend the functionality of the source
definition language. For example, a developer could add
support for:

1. legacy systems, by developing a plug-in that
defines new language primitives that support
access to the system,

2. systems that define a Simple Object Access
Protocol (SOAP) interface, an XML-based
mechanism for exchanging typed information,
using the Web Services Description Language
(WSDL), or

3. systems that define a Resource Description
Framework (RDF) interface using RDF Site
Summary (RSS) technologies.

 Three plug-ins have currently been implemented: a base
plug-in supporting general interpretation tasks and parsing
functionality, an HTTP plug-in providing access to web-
based sources, and an ODBC plug-in supporting access to
structured data sources like relational databases. We have
yet to implement the above protocols because resources
that use them were not applicable to the systems built.
 The XML definition file of each source is parsed into a
DOM representation by the Xerces XML parser. The
XML definition is interpreted by visiting the DOM tree in
a depth-first manner. Each node is visited at least twice:

once on the way down, and once on the way up. Visiting a
node triggers a call to a function contained in a list of
loaded language plug-ins. Plug-ins are loaded in-line as an
attribute of XML tags, and apply to the children of the
node at which they are loaded. During interpretation, a list
of applicable plug-ins is kept in memory such that the
“nearest” plug-in referenced is searched for the appropriate
function; if the function is not contained within that plug-
in, the next previously loaded plug-in is searched, and so
on. Plug-in functions are passed the current environment,
which they can modify. They can also return one of
several control values that affect the interpreter’s visit
behavior, allowing for control flow constructs such as
looping and branching.
 The information gathered while executing the plan is
returned to the executor in the form of XML-based
messages, which are forwarded to the application that
initiated the request. For example, the above example of a
request for Web pages about the author of a book, given an
ISBN number, results in the following messages being
forwarded to the application:

<REQUEST_RESULT QUERYID="1" REQUESTID="2"
 SUMMARY="Encyclopedia Kafka, Franz Kafka,”

TITLE="Encyclopedia.com - Results for Kafka,
 Franz"
TYPE="AUTHOR_WEB_PAGE"
UID="infolab.infoadapter.google"
URL="http://www.encyclopedia.com/06796.htm"/>

<REQUEST_RESULT QUERYID="1" REQUESTID="2"
 SUMMARY="Metamorphosis: Translation”
TITLE="Existentialism and Franz Kafka by
 Katharena Eiermann, Franz ..."
TYPE="AUTHOR_WEB_PAGE"
UID="infolab.infoadapter.google"
URL="http://members.aol.com/CazadoraKE/...”/>

 ...

Applications
 The above infrastructure has been instrumental in
rapidly building a variety of intelligent information
systems, two of which are described in detail below. In
addition to these, we have also built:

 (a) (b)
Figure 3: XLibris object information aggregator. Figure 3a displays ISA Platform server instance (background) used in
building object information pages (foreground), Figure 3b shows hierarchical association tool driving source selection

• a contextual retrieval agent for broadcast news that
supplements the news content with related material
gathered from Web sites [8]

• a contextual retrieval agent for live sports shows
that automatically gathers background information
on teams, and relevant statistics about team
members play-by-play [8]

• an art project that amplifies the emotional impact of
a movie by automatically retrieving images
associated with the dialog that are displayed
surrounding the movie in real time, as the dialog
occurs [9]

• a price point and product comparison system that
gathers specific information helpful in decision-
making for a given class of consumer products

• a plug-in for music players that automatically
retrieves reviews, listings of concerts, song lyrics,
etc., when a user inserts a CD or plays an MP3

XLibris
 XLibris is an intelligent information system built using
the ISA Platform [3]. XLibris uses a version of the ISA
Platform exposed via a high-performance, socket-based
server application. Figure 3a shows the dashboard of the
server.
 Users of the system can scan the barcode of a product
into a tablet or Palm device, and the system will present
them with a micro-site about that product comprised of
information gathered from a variety of distributed
resources.
 XLibris systems in general use a unique object identifier
symbol as a starting point in a multi-round information
gathering process. The first pass involves looking up
descriptors about that object in an appropriate database,
providing the system with meta-information about the
object, including the object’s class. The object’s class is
mapped into a hierarchy of objects which activates a set of
information goals associated with that type of object, and
its parents in the hierarchy. This allows information
specific to the object to be retrieved, where available, and

ensures general information is always gathered. A handful
of information sources capable of satisfying these goals are
then automatically selected by the ISA Platform planning
component from a wrapper-base of over three dozen
wrapper descriptions of proprietary and publicly-available
sources.
Hierarchical Source Selection and Plan Generation
 How information goals are stored and activated are
application-dependent. The XLibris book system seen in
Figure 3a leverages the Dewey Decimal hierarchy for
intelligent source selection. Figure 3b shows the
association tool that knowledge engineers use to bind data
sources and queries to appropriate nodes in the Dewey
hierarchy. In the case of the XLibris book system,
research librarians are the knowledge engineers. They
have the domain expertise to populate the hierarchy with
appropriate associations. For example, a data source
applicable to 20th century German fiction will be bound to
Dewey category 833, German fiction.
 The Dewey classification of a book, as retrieved from
the Library of Congress catalog by XLibris, is used by the
ISA Platform to retrieve additional sources, and query
templates to execute on them, from the hierarchy. Query
templates are filled in by previously retrieved information.
For example, one query template retrieves course syllabi
that use a given book by querying a general Web search
engine, restricted to .edu domains:

 !{BOOK_TITLE} syllabus site:*.edu

 The most specific sources are gathered first (those tied to
the classification of the book), and further sources are
collected by moving upwards (towards more general
sources) in the tree. The data items produced by each of
these sources become information goals in the Platform
planning component.
 This type of hierarchical source selection mechanism
maintains transparency between the end users of a system
and the knowledge engineers who marked up the hierarchy
initially. The knowledge engineers can represent their
expertise in data source content by making highly granular

Figure 4: Watson with embedded ISA Platform

associations with equally specific concept nodes in the
hierarchy. The end user benefits from this in using
XLibris when they’ve scanned a book that is classified at
the same level of granularity. In the cases where very
specific sources (and thus very specific information) are
not available for a given classification, the worst case
scenario is that the information retrieved is as good as
possible, because the sources hung from the parent node in
the hierarchy will be used.

Watson
 Watson is an intelligent search assistant [2] that retrieves
information related to the document the user is viewing.
Watson (see Figure 4), integrates with a variety of
everyday applications on a PC and automatically builds a
set of words and phrases that represent the document a
user is actively working on. Watson then uses these words
and phrases to proactively retrieve related, relevant
information from a variety of online sources. In addition,
Watson can be used as a standard meta-search tool.
 Each information source Watson uses falls into one of
several functional classes, which map directly to one of the
query types that Watson’s automated query generation
algorithms produce. The ISA Platform allows for new
information sources to be rapidly added by selecting from
a set of existing query types. For example, one type of
query produced by Watson is a phrases query, which
contains extracted noun phrases. A new source that
requires a phrases query (e.g., an image database, product
catalog, or other sparsely-indexed source) can quickly be
added to the application by providing a reference to its ISA
definition file on the network in Watson’s source catalog,
and typing the ISA’s requirements to be a phrases query.
The ISA Platform implementation within Watson will then
automatically use this source on the next run by matching
the new source’s requirements with the already-produced
query as input.

Empirical Benefits
 The above applications have benefited from the ISA
platform in the following key ways:

1. Wrapper construction was accelerated six-fold. On
average, skilled developers were spending six days
to develop and test a single wrapper using a
proprietary framework previously developed in-
house using Java. With the ISA Platform, entry-
level developers can accomplish the same task in a
single day using our highly-optimized XML-based
wrapper description language. Development time is
further reduced for those sources that expose data in
XML format because wrappers can be built using
XSLT.

2. Identification of wrapper-related problems has been
automated. Instead of determining there is a
wrapper-related problem by noticing a system
failure or receiving a complaint from a customer,
the ISA Platform automatically monitors the
performance of wrappers and notifies system
administrators of any failure. The Platform further
increases reliability by allowing for intelligent
routing requests to alternate sources when a failure
is detected.

3. Problem diagnosis and resolution has been greatly
accelerated. The ISA platform provides a custom
set of debugging tools that allow developers to
quickly pinpoint problems. Because ISA
definitions are interpreted as modules rather than
compiled into systems, updates are reflected
immediately in production systems.

4. The multithreaded architecture provided by the ISA
Platform provides a three- to five-fold performance
increase as measured by time to deliver results to
the end user. The platform automatically identifies
independent chains of retrievals and executes them
in parallel, making the system highly scalable and
much more responsive than a system employing
serial execution.

 In short, researchers spent more time focusing on
building applications that are valuable to users, instead of
the glue that holds them together.

Related Work
 Work on agent representation languages and
infrastructure for semantic web services [1,5] provide basic
infrastructure for building intelligent, distributed systems.
While this infrastructure is an important step, applications
of this infrastructure are far from being usable in today’s
environments. Our focus has been to build only the
infrastructure necessary to make progress in building
intelligent systems.
 Efforts like AgentCities [10] move beyond simple
problems and demonstrate significant process in the
application of semantic web technologies. However, we
believe progress can be made using existing services,
without such a significant investment in infrastructure and
re-representation of existing sources.
 Early systems built using the Ariadne framework [1]
demonstrated the power of intelligent information

aggregation applications. Yet, still, the focus has remained
on complex reasoning infrastructure unnecessary for many
applications. The ISA Platform was built with web and
high-level systems developers in mind. With our simple
XML-based language, the Platform allows developers to
rapidly build and deploy wrappers using a dialect of an
industry standard language, custom-tailored for this
purpose.
 The ISA Platform represents a lightweight approach to
building intelligent Web applications without requiring the
significant initial investment in ontology and
representation required by full-fledged semantic web
services, nor a complex infrastructure for reasoning about
relatively simple goals and plans.

Ongoing and Future Work
 The Watson application is currently being deployed to a
large user community. In the course of developing Watson
and other applications that leverage the ISA Platform,
we’ve assembled a collection of wrappers to over three
dozen popular online sources. While wrapper construction
time is minimal – on the order of one hour for a completely
built and tested wrapper – we would like to automate this
process further. The most time-consuming portion of
wrapper writing is that of parser construction for sources
that produce non well-formed data, such as HTML-based
search engines.
 To that end, we are working on a suite of tools that
guide users in building wrappers and parsers by
“watching” them interact with the sources in a natural
fashion (i.e., in-line in a web browser). Our goal is to
make wrapper construction a trivial, instrumental part of
the larger, more important task of developing intelligent
information systems.
 Our goal is to provide users the capability of
customizing existing systems or engineering their own
from scratch. This is particularly important in the context
of the XLibris system, where special purpose information
should be returned for specific classes of books. We
intend to allow librarians—experts in classification and the
contents of library information sources—to continually
refine and improve the system’s ability to deliver the most
relevant information to library users. This approach
represents a departure from the processes typically
associated with knowledge-based systems.
 Moreover, the ongoing movement towards standards-
based exchange of information online using frameworks
such as RSS, SOAP and more advanced semantic web
technologies is increasing rapidly. Because we intend the
ISA Platform to continue to provide a robust,
commercially-viable solution for rapid information source
integration and aggregation, we are moving forward in
providing inline interfaces for these standards-based
protocols.

Conclusion
The ISA Platform represents an approach to building
intelligent systems that is application-focused. By
focusing on applications, we learn what reasoning and
representation is necessary to build intelligent systems that
function in real-world environments. Applications provide
functional constraints, which, in turn, lead to tractable
domains of semantic analysis, the value of which can be
measured by the performance of the application. As we
move our applications into full-scale deployments to
demonstrate this value, we hope the ISA Platform will
enable researchers and developers to build a new wave of
intelligent applications that provide dramatically new
capabilities to users.

References

1. Ambite, J., Ashish, N., Barish, G, Knoblock, C.,
Minton, S., Modi, P., Muslea, I., Philpot, A., Tejada,
S. ARIADNE: A System for Constructing Mediators
for Internet Sources, AAAI 1998.

2. Berners-Lee, T., Hendler, J., and Lassila, O. The
semantic web. In Scientific American, May 2001.

3. Budzik, J., and Hammond, K. User Interactions with
Everyday Applications as Context for Just-in-Time
Information Access. IUI 2000.

4. Crossen, A., Budzik, J., Warner, M., Birnbaum, L.,
and Hammond, K. Xlibris: An Automated Library
Research Assistant. IUI 2001.

5. Fensel, D., van Harmelen, F., Horrocks, I.,
McGuinness, D. L., & Patel-Schneider, P. F. (2001).
OIL: An ontology infrastructure for the semantic web.
IEEE Intelligent Systems, 16(2):38--44.

6. Heflin, J. and Hendler, J. Dynamic Ontologies on the
Web. AAAI 2000.

7. Kushmerick, N. Regression testing for wrapper
maintenance. AAAI 1999.

8. Livingston, K., Dredze, M., Hammond, K., Birnbaum,
L. Beyond Broadcast. IUI 2003.

9. Shamma, D., Owsley, S., Hammond, K., and Budzik,
J., Network Arts: Exposing Cultural Reality. WWW
2004.

10. Willmott, S., Dale, J., Burg, B., Charlton, P. and
O'Brien, P., Agentcities: A Worldwide Open Agent
Network. In: AgentLink News, Issue 8, November
2001.

